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Midfrequency Vibrations of a Complex Structure: Experiments
and Comparison with Numerical Simulations

Eric Savin*
ONERA, 92322 Chatillon, France

The results of an experimental study of the vibrations of a complex, three-dimensional heterogeneous structure
under broadband excitations and comparisons with numerical simulations are presented. The so-called midfre-
quency range is exhibited for the tested structure, and a modeling strategy is proposed on the basis of physical
observations from the measured frequency response functions and mechanical energies. A time-frequency algo-
rithm is used for the numerical analyses at the intermediate frequencies, which reveal the current shortcomings

of the available numerical methods.

Nomenclature

B = overall frequency band

B, = vth narrow midfrequency band

D = structural damping matrix

(E;,) = -estimated mechanical energy in the sth segment
and vth narrow frequency band

(e;(w)) = estimated mechanical energy density
in the sth segment

F, = vector of nodal forces in the vth narrow
frequency band

i = /-1

K = structural stiffness matrix

M = structural mass matrix

m; = mass of the jth plate

N = number of degrees of freedom

Noplace = number of plates in a structural segment

9y = «th generalized coordinate

t = time

U, = vector of nodal displacementsin the vth narrow
frequency band

U, = approximated vector of nodal displacements
in the vth narrow frequency band

\4 = perturbation of the structural stiffness matrix

Vap = apthelementof V

Ujk = measured normal velocity by the kth accelerometer
of the jth plate

Aw, = bandwidth of the vth narrow midfrequency band

8k = Kroneckersymbol: 8 =1if j =k, 8, =0if j #k

& = average structural damping rate in the vth narrow
midfrequency band

T = generic stiffness parameter

oy = «oth structural eigenmode

o} = «th eigenmode of the perturbed structure

Q, = central frequency of the vth narrow
midfrequency band

w = circular frequency

Wy = «oth structural eigenfrequency

g = «th eigenfrequency of the perturbed structure

1, = indicator function of a set /
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Introduction

OW-FREQUENCY linear vibrations of complex, industrial

structures can be predicted efficiently by reduced numerical
models of limited size. They are constructed by a Ritz-Galerkin
projection on a finite number of eigenmodes associated to the first
eigenvaluesof the conservativestructure. Their efficiency is because
only a low number of generalized degrees of freedom are used in
this type of representation. These models, eventuallyupdated by ap-
propriate methods,' usually compare very well with experimental
data at low frequencies but can deteriorate rapidly when the fre-
quency is increased. That such techniques are less adapted to the
higher-frequency ranges originates from numerical, but above all,
more fundamental physical reasons. The objective of the present
work is threefold. First, we show from extensive experiments some
characteristicfeatures of the vibrational behaviorof a truly complex
structure in the higher-frequencyranges. Second, we deduce a pos-
sible modeling strategy from these observations. Third, we compare
to our experimental data the numerical results obtained with a par-
ticular simulation method adapted to the prediction of vibrationsin
the so-called midfrequency range, and we discuss the relevance of
that method.

A “complex” structureis defined in the frame of the presentstudy
as a mechanical system constituted by the assembly of several more
simple subsystems, such as beams, plates, cylindrical shells. The
latter can also have high stiffness contrasts. Complexity can also be
introduced by secondary equipments attached to a main structure,
already complex in itself, but this aspect is presently ignored in
this communication. Midfrequenciesare defined as the intermediate
frequencies for which the structure has neither a modal behavior as
in the low-frequency range nor a smoothed diffusive-like behavior
as in the high-frequencyrange. A truly complex, three-dimensional
structure of large size is tested under broadband excitations in order
to describe more precisely, from phenomenological observations,
the various frequency domains.

From these experiments we wish to draw a tentative modeling
strategy for midfrequency vibrations as they were already defined.
Several numerical methods have been proposed in the literature to
tackle such a problem. They can be arbitrarily divided into three
classes. A first approach consists in extending the usual numerical
methods adapted to low-frequency predictions, typically the finite
element method, to the midfrequency range. Researchers have con-
sidered either higher-orderand/or hierarchical finite elements,>* or
multiscales finite elements in the space variable,*~% time variable’:3
or both,>1? or spectral approaches,!!' or coupled finite elements and
integral representations.? The second approach consists in extend-
ing the analysis methods adapted to high-frequency predictions to
the midfrequency range. The influence of global eigenmodes of
vibration in statistical energy analysis (SEA)!*!* or in a power flow
approach,”” for instance, is considered in some hybrid methods.
Asymptotic ray methods may also be applied.!¢ The third class of
methods consists in using some specific reduction bases adapted to



the intermediate frequency range.!’~2! The choice of one of these
methodologies for numerical simulations of the complex struc-
ture studied here shall be guided by the observations done from
experiments.

In the next section we start by briefly presenting the complex
structure in question, as well as the experimental setup and the
measurements made. Then in a subsequent section we detail the
various results obtained and give tentative physical interpretations,
highlightingparticularilythe intermediate frequencyrange. We also
underline the implications of the observed behavioron the modeling
strategy to be adopted, especially in view of the assumed linearity
of the structure, the trends of its frequency response and mechanical
energy distribution, and the influence of uncertainties. In the fourth
section we present the results of numerical simulations for the time-
frequency algorithmdevelopedin Refs. 7-9, which is found to be a
prioriwell adapted to the problemathand, and can be rather straight-
forwardly implemented in any commercial finite element code. We
finally draw some conclusions and perspectiveson further develop-
ments on the basis of the comparisons of these numerical results
with the experimental ones and especially the actual limitations of
the numerical methods currently implemented.

Description of the Structure and Experimental Setup

We give here only the minimum necessary information on the
tested structure and the experimental setup. More details are given
in Ref. 22.

Geometry and Mechanical Characteristics of the Structure

The experimental structure is made of aluminum alloy. An
overview of its geometry can be seen on the CAD view of Fig. 1. Its
cross-section characteristics are summarized in Fig. 2. It is 5.3 m
long, 2.5 m wide, and 1.4 m high and comprises about 200 plates,
400 stiffeners, and 54 cavities. It is divided along its longitudinal
axis noted y into nine compartments, or segments, seperated by
vertical bulkheads constituted by nonstiffened plates. The compart-
ments were assigned different lengths to break the periodicity. All
plates have a thickness of 1.2 mm, and their mechanical character-
istics are given in Table 1 together with those of the stiffeners and
the ribs and stringers, which constitute the main frame. These prop-
erties were measured from samples of the various elements used.
The experimental structure has been weighted, and its total mass is
825 kg.

The longitudinal elements of the main frame are continuous
(welded), its transverse (x axis) and vertical (z axis) ribs and
stringers being welded to the longitudinal ones. Rivets are used
for all junctions of the plates with the main frame and the ribs

Fig. 1 CAD view of the experimental structure. The structure is en-
tirely closed for experiments, but some outer plates have been removed
on the sketch to make its main frame visible.
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Table 1 Mechanical characteristics of the structural elements

Structural element Density, kg/m? Young’s modulus, N/m?

Plate 2670 6.30 x 10'°
Stiffener 2700 6.23 x 10'0
Stringer/frame 2700 6.95 x 10'°

(a) front view
1.0m

(b) side view
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Fig.2 Sketches of a typical segment with positioning of the L-shaped
30 x 30 x 3 mm stiffeners: a) cross section (front view) with the stiffen-
ers on the outer plates, b) side view with the stiffeners on the intermediate
floor, and c) top view with the stiffeners on the inner bulkheads.

Fig.3 Experimental complex structure in testing configuration.

and stringers, with an average spacing of 5 cm. The stiffeners are
riveted to the plates with an average spacing of 5 cm as well. This
length correspondsto wavelengthsat 1162 Hz for the present mate-
rials. The average spacing between stiffeners is 20 cm (see Fig. 2).

Experimental Setup

The structure is suspended by means of eight rubber extensible
springs, the overall frequency of suspensionbeing 1.84 Hz, which is
well below the frequency range of interest. Therefore the structure
is considered to have free-free boundary conditions in the analysis.
Figure 3 is a photograph of the structure in testing configuration.

To eliminate the contributions of internal acoustics, foams have
been suspended in all cavities. It has been shown by additional
experiments?? that a filling rate of 10% of the cavities’ volume is
sufficient for the erasure of acoustic modes in the midfrequency
range of interest, up to about 1200 Hz (see the following).

Four sets of accelerometers are distributed on the structure (see
Fig. 4). The first set is positionedalong the upper-right-handcorner
in the longitudinaldirectiony in orderto capturethe global vibration
modes of the structure: 10 B&K 4371 triaxial sensors are positioned
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right at each bulkhead between two segments and the extremities of
the structure. The second set contains 69 miniature accelerometers
distributedrandomly on the 23 plates constituting the first segment,
including the 6 nonstiffened plates of the bulkhead between this
segment and the second one. Three accelerometers are provided on
each plate. The third and fourth sets are similar in principle to the
second one, the accelerometers being distributed randomly as well
on the fifth and ninth segmentsrespectively. Three types of low mass
sensors are used in these sets: B&K 8307, B&K 4375, and B&K
4374. Their purpose is to estimate the mechanical energies in the
equippedsegments. Finally accelerometers were installed at each of
the four excitation locations (see the following) in order to measure
the autotransfers. These accelerometers and the four preceding sets
amount to a total number of 240 sensors, for which acquisitions
were made in four sequences up to 10,000 Hz.

White-noise excitations are successively applied at four points
at one extremity of the structure (see Fig. 4 for their locations and
labels). They are generated by an electrodynamicexciter connected
to a force gauge developed at ONERA, whose parasitic mass is less

o set#1

Fig.4 Locations of the applied excitations and sets of accelerometers.
Only several accelerometers of sets 2-4 have been displayed on this
sketch, for illustration purposes.

than 0.5 g. Examination of input powers and ordinary coherencies
indicatedthatall measurements were fully workablein the frequency
range 50-5000 Hz (Ref. 22).

Midfrequency Vibrations of the Experimental Structure:
Measurements and Mechanical Interpretation

Linearity of the Structure

Were the structure perfectly linear throughout the whole fre-
quency range considered, reciprocity would be observed at any
frequency. Figure 5 compares the frequency response function (ac-
celeration) measured at the location and direction of excitation FY4
when excitation FY1 is applied, and the frequency response func-
tion measured at the location and direction of excitation FY1 when
excitation FY4 is applied. It is seen that these two curves are al-
most identical up to about 1200 Hz, which is in agreement with the
cutoff frequency estimated from the average spacing between the
rivets. Beyond this frequency nonproportionaldamping and nonlin-
ear effects are introduced locally by the riveted joints of the various
structural elements. For an analyis at these frequencies, they can
be taken into account through for instance loss factors in an ener-
getic approach, as done in SEA; this of course cannot permit the
recovery of the discrepencies observed for the frequency response
functions. Up to the cutoff frequency just outlined, itis expected that
structural vibrations can be well predicted by the classical theory of
linear elasticity, including damping and a proper representation of
the boundary conditions.

Illustration of the Midfrequency Range

As a first illustrative example of the various measurements done
on the experimental structure described in the preceding section,
we plot on Fig. 6 the estimated mechanical energy densities (e(w))
for segments 1 (at the extremity of the structure where the loads
are applied), 5 (intermediate), and 9 (the other extremity) in the
frequency range 50-5000 Hz. Mechanical energies in each segment
are estimated by

Nplate 3
@) =D =LY @)l (1)
j=1 k=1

where s =1, 5, or 9 for either segment 1, 5, or 9.
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Fig.5 Comparison of cross transfers for excitations FY1 and FY4.
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Fig. 6 Estimated mechanical energy densities for segments 1, 5, and 9 and excitation FX3. dBs =10 X log,(1 kg - m?/s?).

This plotdisplaysthree characteristicfrequency domains denoted
by LF, HF, and MF in Fig. 6. In the low-frequencyrange (LF), here
for frequencies up to about 250 Hz, the estimated mechanical en-
ergies have the same levels for the three segments, although they
are rapidly varying. Thus for such frequencies the vibratory energy
propagates broadly to the entire structure and does not remain local-
ized near the excitation.On the contrary in the high-frequencyrange
(HF), here for frequencies higher than about 1200 Hz, the energy
levels decrease significantly when observed at increased distances
from the excitation. They are also steadily decreasing with the fre-
quency. Thus for such frequencies the vibratory energy remains
localized close to the excitation and diffuses only weakly to the
other parts of the structure. For the intermediate frequencies, the so-
called midfrequencyrange (MF), the general trend is that the energy
levelsin segments 5 and 9 are comparable but lower than the one in
segment 1. Thus the vibratory energy gets partially localized close
to the excitation, the remaining being spread in the entire structure
as is the case in the low-frequencyrange. In some narrow subbands,
however, one can observe that energiesin segment 5 or 9 or both are
comparablewith the energyin segment 1. This is also to be expected
from a typical midfrequency dynamic behavior because it is at the
transition between the low- and high-frequency ones. It outlines in
the mean time the necessity of having an information on the phase
in that intermediate frequency range.

Figure 7 displays the vertical accelerations measured by the ac-
celerometers 1, 4, and 9 of the first set: they are located along the
upper right corner of the structure in the longitudinal direction y,
accelerometer 1 being the closest one to the excitation, accelerom-
eter 4 being at an intermediate position, and accelerometer 9 being
located at the other extremity of the structure. The same general
remarks as for localization or not of the vibrational energy hold for
the acceleration amplitudes shown, with an additional information
given here by the phase. In the high-frequencyrange it is uniformly
decreasing and follows the same trend for the three accelerometers.
Thus it brings no additional knowledge on the vibrational state of
the structure from one point to another. On the other hand, it is
strongly varying between —x and 4+ (phase jumps correspond to
the resonances) in the low-frequency range, for which it constitutes
an essential characteristic of the vibrationalstate of the structure. In
the intermediate-frequencyrange the phase is significantly decreas-

ing; however, it follows different trends from one point to another.
Thus it constitutesan importantcharacteristicof the vibrationalstate
in this frequency domain. This means thatenergy-typequantitiesare
not sufficient to describe midfrequency vibrations as just defined in
the context of the present experimental observations: one might be
able to provide an information on the phase as well (from measure-
mentor simulationof local quantities). This important point has also
been underlinedin the recent work of Ref. 15 dedicatedto the devel-
opment of a numerical method for the prediction of the vibrations
at these intermediate frequencies.

From a mechanical point of view, the three frequency domains
just exhibited are characterizedin the following way:

1) Low frequenciescorrespondto the first vibrationaleigenmodes
of the entire structure, the modal density (provided that it can be
defined in this domain, which is rather unclear) being low.

2) High frequencies correspond to the frequency ranges where
the modal density exhibits high, rather uniform values over these
ranges. In this case energy-type quantities smoothing the contri-
butions from the various eigenmodes in a given frequency band
are more adapted to the characterizationof the vibratory state of the
structure, especiallybecause the phase does not bring any additional
information.

3) Medium frequencies corresponds to the frequency ranges
where the modal density exhibits important variations from one
band to the other. Vibrations of a complex structure are character-
ized by the superposition of some global eigenmodes and clusters
of local eigenmodes?* which have an influence on both the local
and global behaviors of the structure in the narrow frequency band
where they are packed.

The local modes just introduced do not necessarily have a highly
oscillating shape. For instance, vibrations of three-dimensionaltruss
structures typically exhibit such a behavior because of the numer-
ous, densely packed eigenmodes associated to all of the repetitive
truss members (beams and frames), which exist even at relatively
low frequencies?®?! In the present case, modal clusters do occur
because of the repetitive (although nonperiodic) nature of the ex-
perimental structure. They are associated to the local eigenmodes
of the various plates constituting it, which have comparable geo-
metrical and mechanical characteristics.Because of this occurence,
uncertainties play a fundamental role as shown in the next section.
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Fig.7 Measured vertical accelerations by accelerometers 1,4, and 9 of the first set and excitation FX3. dBf = 20 X log;,(1 m/s?).

Influence of Uncertainties

The influence of uncertainties can be explained on the basis of
a simple example taken from the books of Arnol’d** or Morand
and Ohayon.?> Consider an arbitrary structure occupying a bounded
domain and whose eigenmodes might depend continuously on a
single parameter, say t. These eigenmodes,denotedby {¢,}1 <o < v>
andthe associatedeigenfrequencies,denotedby {w, }| <4 < v, satisfy

a classical eigenvalue problem:
K¢, =M, 2
The eigenmodesdefine an orthogonaltransform, which diagonalizes
the symmetric, positive definite matrices M and K simultaneously
(whose existence is ensured by a classical result of linear al-
gebra); we choose to normalize them with respect to the mass:
¢:0T(M¢;ﬁ =J4p, where T stands for transposition. Let us now in-
troduce a perturbation V(t) of the stiffness matrix such that the set
of admissible displacements remains unchanged. Then the eigen-
values {@, }1 <4 < v Of the perturbed structure satisfy
(7 8up + Vap)as = @ 8ap ®)
where the {g,}, <, <~ are the coordinates of the eigenmodes of the
perturbed structure, denoted by {4 }1 <o <n, When projected on the
unperturbed eigenmodes, and V4 is the projection of V on ¢, and
¢5. When the perturbed eigenmodes are sought as a linear combi-
nation of two unperturbedeigenmodes associated to two successive
single eigenvalues ? < w3 (two-modes approximation), we obtain

@2 = L( + 20 £ AT)

(| %)

with Ay =2 + Ve and A=(A; — Ay)?+4V}. The perturbed
eigenvaluesare generally not repeated because the case A = () leads
to two equations for one unknown (z). Two cases arise:

1) 2V}, < |A; — Ay|: this is the so-called weak interaction. Then
@ > Ay, @5 =Xy, -~ —¢p, and ¢, > ¢,. Perturbations have in-
troduced only a slight shift of the eigenvalues and the eigenmode
directions.

o=

Ty + 1 — 2 @)

s = A"

2)2Vi5 2 |A; — Az]: thisis the so-called strong interaction. Eigen-
modes are significantly altered, and the particularcase A; = A, gives
b= (—p,+¢,)/v/2and ¢, = (¢, + ¢,)/+/2, thatis, an overall
rotation of 45 deg of the modes.

Note that considerationof a perturbationof the mass matrix leads
to comparable results. A symmetric system with three degrees of
freedom has also been considered in Ref. 26.

The strong interaction case shows that for a structure which has
comparable eigenvalues a weak perturbation, or uncertainty, of the
stiffness induces strong modifications to its response, at least lo-
cally. The overall space of admissible displacements is basically
unchanged, but the vectors of its eigenmode basis can be signifi-
cantly altered. Complex structures that exhibit a repetitive pattern
of any kind, but not necessarily periodic, as for example the present
experimental structure, are therefore subjected to strong interac-
tion effects. This physical observation has important implications
on the numerical strategy to be chosen: it means that it is unreal-
istic to compute local eigenmodes for such systems unless model
uncertainties have been significantly reduced. Thus, for broadband
excitations and particularily midfrequency vibrationsit is generally
not possibleto use reductionmethods based on the projectionon the
eigenmode basis. Furthermore, it is worth noting at this stage that
the extraction of higher-order eigenmodes from a large eigenvalue
problem sets important algebraic and numerical difficulties as well.
However, one can remark that, although local eigenmodes might be
individually strongly altered by the uncertainties, their combination
should remain rather stable as indicated in the preceding remarks.
The modal hybridization method proposed by Morand'® relies on
this fact to construct a reduction basis adapted to midfrequency
vibrations and which is strongly dependent on the imposed excita-
tions. The frequency window method of component mode synthesis
proposed by Min et al.”’ is also reminiscent of this latter property.

Numerical Simulations of the Midfrequency Vibrations

Modeling Strategy

From the examination of the experimental results for the broad-
band vibrations of a complex three-dimensionalstructure presented
in the preceding section, we have outlined several key features that
numerical simulations should be able to reproduce in the midfre-
quency range we focus on. They orientate the modeling strategy we
should adopt for the analysis of the present experimental structure.



First, analytical methods cannot be applied as a result of the evi-
dent complexity of this structure. Therefore we turn out to numerical
methods. Classical linear elasticity shall be relevant for the low- to
midfrequency range of interest, say B=100-1200 Hz, so that a
variational formulation in the frequency domain discretized by the
finite element method seems well adapted to our objectives. It al-
lows the accounting for the proper boundary conditions, as well
as the modeling of damping effects. For instance, a visco-elastic
behavior with memory can be modelized by consideringfrequency-
dependent stiffness and damping operators. This model is retained
for the numerical simulation presented here; its relevance for the
midfrequency range has already been demonstrated in Ref. 28.

The finite element mesh should incorporate a large number of
degrees of freedom to cope with the typical wavelengths observed
in the frequency range B. As modal reduction cannot be directly
applied in this case, for the physical and numerical reasons just
outlined (considering also the fact that the stiffness matrix depends
on the frequency in the general case) a direct inversion method of
the whole dynamic stiffness matrix of the structure shall be im-
plemented. To avoid the highly expensive computation of this in-
verse at each frequency point for the range B, we have implemented
a time-frequency algorithm,-® which allows the calculation to be
performed only for the central frequencies of narrow midfrequency
bands whose union is the entire frequency range 5.

Time-Frequency Algorithm

A detailed presentation of the algorithm has already been made
in Refs. 7-9. We briefly outline its main steps in the present section.
A narrow midfrequency band B, is defined by its central circular
frequency €2, and its bandwidth Aw,, such that

B, =(Q, - Aw,/2,Q, + Aw,/2) 5)

with Aw, K Q, and B=U, B,.

The weak formulation of the equation of motion of the structure
in the narrow frequency band B, is discretized by the projectionon
a finite element basis, which leads to the usual following equation
forall w € B,:

[—0*M + ioD(w) + K()]U,(0) = F,(0) 6)

Damping and stiffness matrices depend on the circular frequency
because the elasticity tensor is frequency dependent for the general
case of material visco-elasticity with memory. This dependence is
particularly apparent in the intermediate-frequencyrange, whereas
it is often hardly noticeable in the low-frequency range >® Because
functions w — D(w) and w+— K(w) are also continuous and usu-
ally smooth enough on the whole real line and considering that
Aw, K Q,, the preceding Eq. (6) is approximated by

[-™M +ioD@,) + K@)]U,@) =F,(@) D

Equation (7) is associated to the second-order ordinary differential
equation with constant coefficients:

MU, (1) + D(Q,)U, (1) + K(Q)U, (1) = F, () ®)

Performing a change of variablew = o' + 2, in Eq. (7) withw € B,
and o' € By=[—Aw, /2, Aw, /2], the equation obtained is solved
numerically backward in time by a Newmark scheme for the long
timescale 277 / Aw,. The approximateddisplacements U, in the nar-
rowband B, correspondingto the short timescale 27 /€2, are recon-
structedexactly from these numericalresultsby Shannon’s sampling
theorem. The time-frequency algorithm allows the computation of
U, (w) for any w in B, at a numerical cost theoretically comparable
to the direct inversion of Eq. (6) at a single frequency in the nar-
rowband B,. The final solution for the whole frequency range B is
obtained as

U = Y 1 @)U, ) ©)

This algorithm has been tested extensively at ONERA for simple
and more complex configurations, including coupled fluid-structure
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interactionin structuralacoustics applications,for models of slender
structuresup to about 30,000 degrees of freedom and 2% of nonzero
terms for the stiffness matrices.

Application to the Experimental Structure

A finite element model has been developed for the experimental
structure. It comprises 86,939 degrees of freedom for 16,349 nodes
and 38,394 elements, including 35,166 shell elements and 3,228
beam elements. Internal acoustic cavities have not been modeled
for the reasons already mentioned in the section describing the ex-
perimental setup. The numbering of equations has been optimized
using the Gibbs-Poole-Stockmeyer algorithn?® for sparse storage.
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The density of nonzero terms in the upper triangular part of the
stiffness matrix is about 0.02% for a mean half-bandwidth equal to
6%. As we want to use it for further studies in case of nonsymmet-
ric impedance boundary conditions, no symmetry conditions were
applied, and the whole structure has been discretized, althoughit is
symmetric with respect to its longitudinal axis.

The overall frequency range of numerical analysis By, = 100-
1000 Hz has been devided into 24 narrow subbands B, of increas-
ing widths, the latter being fixed by the criteria Aw, /2, 22 0.1 for
v=1,2,...,24.Dampingis takeninto accountthroughoutthe anal-
ysis by a simplified model of the damping matrix, which is given
the form

D, = [M+1/(2 - Aw2/4)K,] (10)
The average damping rate ¢, in the narrow frequency band B, is
equal to 0.75% for all v=1, 2, ..., 24; this value has been fixed
after comparisons with the experimental results for the frequency
response functions.

Calculations have been performed using the commercial code
MSC/NASTRAN in which the time-frequency algorithm has been

SAVIN

implemented in Direct Matrix Abstraction Program (DMAP) in-
structions. No particular care has been taken on the optimization
of the program (which uses sparse matrices), but the improvement
in terms of CPU time compared to a direct inversion method on
a frequency-by-frequency basis is significant. The vectorized com-
putation for one narrow frequency band and the reconstruction at
100 frequency points in that band takes 17 min of CPU time, to be
compared to 2 min of CPU time for the direct inversion at a single
frequency; thus the gain is a factor of about 10.

Comparisons with Experimental Observations
and Lessons Pertaining to Them

‘We present here only the results obtained for the example of exci-
tation FX3. Numerical results for the other excitationscall for qual-
itatively comparable comments. Figure 8 is a plot of the frequency
response function at the point where excitation FX3 is applied par-
allel to the x axis. Figure 9 is the plot of the frequency response
functions at the locations of accelerometers 1, 4, and 9 of the first
set. Finally, Fig. 10 is the plot of the estimated mechanical energies
using Eq. (1) integrated over narrow frequency subbands, for both
the measured and computed responses:

T
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~100" I I I
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Fig. 10 Comparison of measured (——) and computed (——) mechanical energies in segments 1, 5, and 9 for excitation FX3. dBye=

10 X log;, (1 kg - m?/s®).
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Numerical simulations and experimental results compare satis-
factorily up to 700 Hz for the frequency response functions and
up to 600 Hz for the mechanical energies. (The estimator used for
these quantities is rather coarse, and anyhow it is not adapted to the
low-frequency range as seen on the plots.) Clearly, the latter lim-
itation is caused by the inadequacy of the finite element model in
term of number of degrees of freedom for the higher frequencies, as
further shown by the comparison of the frequency response func-
tions for the accelerometers of sets 2 through 4 (not displayed in
this communication). Indeed the typical size of the plate and beam
elements is twice the average spacing between the rivets. There-
fore refinement of the mesh is still possible. However, the question
raised by these resultsis the relevance of pursuing such a strategy of
refinement. The size of the elements would rapidly reach the aver-
age spacing between the rivets; thus, more sophisticated models of
mechanical junctions and connections would be needed. The latter
should account for both geometrical (contact, friction) and mate-
rial (plasticity) local nonlinearities, for instance. To the best of our
knowledge, no universal and well-established procedure has been
proposed yet allowing to use them in routine applications. Further-
more this approach adds uncertainty to the problem in the sense
that a refined mesh would require a great deal of refined estimation
of the (increasingly numerous) parameters input in the model and
their levels of confidence. Nevertheless, one can conjecture that a
routine finite element analysisis always able to predict the structural
dynamic behavior in some lower part of the midfrequency range,
provided that a direct inversion of the dynamic stiffness matrix is
performed.

But this case study, considered as a characteristicone of industrial
applications(for instance a military aircraftfuselage), underlinesthe
difficulties put by the development of numerical tools for the pre-
diction of vibrations in the upper part of the midfrequency range
as just defined, as well as its transition with the high-frequency
range. Indeed Figs. 6 and 7 show that a truly complex structure
has a completely different dynamic behavior whether it is observed
in the low-frequency range or in the high-frequency range. Global
standing waves, the global normal modes, dominate in the former,
whereas a typical transport or diffusive pattern is observed in the
latter. It is very much unlikely that the same mathematical model
and numerical method can describe both behaviors. For instance,
steady-state or transient SEA equations have a fundamentally dif-
ferent mathematical structure as compared to the classical structural
dynamics equation (6). In the intermediate-frequencyrange there is
atransitionbetween two dynamic behavior patterns; therefore, there
should be a transition of numerical models as well. We can consider
several different strategies, having all their own limitations. Multi-
scale approaches, for the present case, raise questions whether it is
possible to define different spatial scales for such a heterogeneous,
bounded structure. A possible way to overcome these difficulties
would be to use nonparametric models,*° at least to model local un-
certainties corresponding to the mechanical junctions in conjunc-
tion with substructuring techniques in the finite element method.
The same questions arise with the implementation of SEA, hybrid
SEA, or power flow methods!*~!3 being foreseen, whereas their ap-
plication to the present case for the high-frequency range seems
feasible at first glance; their extension to the upper part of the mid-
frequencyrange identified hereraises challengingquestions. On the
other hand, asymptotic ray methods'® could not properly handle the
boundary conditions and the topology of such a structure and thus
would require adapted treatments for these aspects. Furtherresearch
is clearly neededin this direction,and one of the aims of this study is
to show that the proposed numerical methods should be applicable
to arbitrary, complex configurations and topologies that exhibit the
most characteristic features and difficulties raised by midfrequency
vibration predictions.

As regards experimental aspects, one can make the following
concluding remark for the time being. An interesting aspect of the
numerical reduction bases proposed in Refs. 19-21 is that they can
be constructed from measured responses on one hand and that they
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fully integrate the fact that these responses are highly dependent
on the shape of the excitations, at least in the midfrequency range,
on the other hand. Their intensive use requires the development of
appropriate acquisition procedures in order to construct transfer re-
sponse functions of high dimensions. Automated laser vibrometers
can partially fulfill such needs and bring further insights into the
midfrequency range of vibrations.

Conclusions

This paper has presented a tentative experimental validation of
some numerical methods currently implemented for the prediction
of vibrations of complex structures in the midfrequencyrange. The
experimental data have been used to give further evidences of the
typical behavior of a truly complex structure in the intermediate-
frequency range and to elaborate a modeling strategy adapted to
these frequencies. Comparisons between measurements and numer-
ical simulations show a good agreement for the lower part of the
frequency range of interest, which validates a posteriori the strategy
chosen, but the model developed fails to properly predict the struc-
tural responsecharacteristicsin its upper part. Although the origin of
this inefficiency can be clearly identified, it raises questions whether
such predictions are realizable with the actual numerical methods
in cases of realistic complex structures. This study has underlined
the need to enhance the numerical methods used for midfrequency
vibration predictions, which should be able to account for an arbi-
trary complex topology, typically assemblies of beams, plates, and
shells rather than those simple structural elements.
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