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Midfrequency Vibrations of a Complex Structure: Experiments
and Comparison with Numerical Simulations

Eric Savin¤

ONERA, 92322 Ch Oatillon, France

The results of an experimental study of the vibrations of a complex, three-dimensional heterogeneous structure
under broadband excitations and comparisons with numerical simulations are presented. The so-called midfre-
quency range is exhibited for the tested structure, and a modeling strategy is proposed on the basis of physical
observations from the measured frequency response functions and mechanical energies. A time-frequency algo-
rithm is used for the numerical analyses at the intermediate frequencies, which reveal the current shortcomings
of the available numerical methods.

Nomenclature
B = overall frequency band
Bº = ºth narrow midfrequency band
D = structural damping matrix
hEs;ºi = estimated mechanical energy in the sth segment

and ºth narrow frequency band
hes .!/i = estimated mechanical energy density

in the sth segment
Fº = vector of nodal forces in the ºth narrow

frequency band
i =

p
¡1

K = structural stiffness matrix
M = structural mass matrix
m j = mass of the j th plate
N = number of degrees of freedom
Nplate = number of plates in a structural segment
q® = ®th generalized coordinate
t = time
Uº = vector of nodal displacements in the ºth narrow

frequency band
U
¯ º = approximated vector of nodal displacements

in the ºth narrow frequency band
V = perturbationof the structural stiffness matrix
V®¯ = ®¯ th element of V
v jk = measured normal velocity by the kth accelerometer

of the j th plate
1!º = bandwidth of the ºth narrow midfrequency band
± j k = Kronecker symbol: ± jk D 1 if j D k, ± jk D 0 if j 6D k
³º = average structural damping rate in the ºth narrow

midfrequency band
¿ = generic stiffness parameter
Á® = ®th structural eigenmode
QÁ® = ®th eigenmode of the perturbed structure

Äº = central frequency of the ºth narrow
midfrequency band

! = circular frequency
!® = ®th structural eigenfrequency
Q!® = ®th eigenfrequencyof the perturbed structure
I = indicator function of a set I
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Introduction

L OW-FREQUENCY linear vibrations of complex, industrial
structures can be predicted ef� ciently by reduced numerical

models of limited size. They are constructed by a Ritz–Galerkin
projection on a � nite number of eigenmodes associated to the � rst
eigenvaluesof theconservativestructure.Their ef� ciency is because
only a low number of generalized degrees of freedom are used in
this type of representation.These models, eventuallyupdatedby ap-
propriate methods,1 usually compare very well with experimental
data at low frequencies but can deteriorate rapidly when the fre-
quency is increased. That such techniques are less adapted to the
higher-frequency ranges originates from numerical, but above all,
more fundamental physical reasons. The objective of the present
work is threefold. First, we show from extensive experiments some
characteristicfeaturesof the vibrationalbehaviorof a truly complex
structure in the higher-frequencyranges. Second, we deduce a pos-
sible modeling strategyfrom these observations.Third, we compare
to our experimental data the numerical results obtained with a par-
ticular simulation method adapted to the predictionof vibrations in
the so-called midfrequency range, and we discuss the relevance of
that method.

A “complex” structure is de� ned in the frame of the presentstudy
as a mechanical system constitutedby the assembly of several more
simple subsystems, such as beams, plates, cylindrical shells. The
latter can also have high stiffness contrasts.Complexity can also be
introduced by secondary equipments attached to a main structure,
already complex in itself, but this aspect is presently ignored in
this communication.Midfrequenciesare de� ned as the intermediate
frequencies for which the structure has neither a modal behavior as
in the low-frequency range nor a smoothed diffusive-likebehavior
as in the high-frequencyrange. A truly complex, three-dimensional
structure of large size is tested under broadbandexcitations in order
to describe more precisely, from phenomenological observations,
the various frequency domains.

From these experiments we wish to draw a tentative modeling
strategy for midfrequency vibrations as they were already de� ned.
Several numerical methods have been proposed in the literature to
tackle such a problem. They can be arbitrarily divided into three
classes. A � rst approach consists in extending the usual numerical
methods adapted to low-frequency predictions, typically the � nite
element method, to the midfrequencyrange. Researchers have con-
sidered either higher-orderand/or hierarchical � nite elements,2;3 or
multiscales � nite elements in the space variable,4¡6 time variable7;8

or both,9;10 or spectral approaches,11 or coupled � nite elements and
integral representations.12 The second approach consists in extend-
ing the analysis methods adapted to high-frequencypredictions to
the midfrequency range. The in� uence of global eigenmodes of
vibration in statisticalenergy analysis (SEA)13;14 or in a power � ow
approach,15 for instance, is considered in some hybrid methods.
Asymptotic ray methods may also be applied.16 The third class of
methods consists in using some speci� c reduction bases adapted to
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the intermediate frequency range.17¡21 The choice of one of these
methodologies for numerical simulations of the complex struc-
ture studied here shall be guided by the observations done from
experiments.

In the next section we start by brie� y presenting the complex
structure in question, as well as the experimental setup and the
measurements made. Then in a subsequent section we detail the
various results obtained and give tentative physical interpretations,
highlightingparticularilythe intermediatefrequencyrange. We also
underlinethe implicationsof the observedbehavioron the modeling
strategy to be adopted, especially in view of the assumed linearity
of the structure, the trendsof its frequencyresponseand mechanical
energy distribution,and the in� uence of uncertainties. In the fourth
section we present the results of numerical simulations for the time-
frequency algorithmdeveloped in Refs. 7–9, which is found to be a
prioriwell adaptedto theproblemat hand,and can be ratherstraight-
forwardly implemented in any commercial � nite element code. We
� nally draw some conclusionsand perspectiveson further develop-
ments on the basis of the comparisons of these numerical results
with the experimental ones and especially the actual limitations of
the numerical methods currently implemented.

Description of the Structure and Experimental Setup
We give here only the minimum necessary information on the

tested structure and the experimental setup. More details are given
in Ref. 22.

Geometry and Mechanical Characteristics of the Structure
The experimental structure is made of aluminum alloy. An

overview of its geometry can be seen on the CAD view of Fig. 1. Its
cross-section characteristics are summarized in Fig. 2. It is 5:3 m
long, 2:5 m wide, and 1:4 m high and comprises about 200 plates,
400 stiffeners, and 54 cavities. It is divided along its longitudinal
axis noted y into nine compartments, or segments, seperated by
vertical bulkheads constitutedby nonstiffenedplates. The compart-
ments were assigned different lengths to break the periodicity. All
plates have a thickness of 1:2 mm, and their mechanical character-
istics are given in Table 1 together with those of the stiffeners and
the ribs and stringers, which constitute the main frame. These prop-
erties were measured from samples of the various elements used.
The experimental structure has been weighted, and its total mass is
825 kg.

The longitudinal elements of the main frame are continuous
(welded), its transverse (x axis) and vertical (z axis) ribs and
stringers being welded to the longitudinal ones. Rivets are used
for all junctions of the plates with the main frame and the ribs

Fig. 1 CAD view of the experimental structure. The structure is en-
tirely closed for experiments, but some outer plates have been removed
on the sketch to make its main frame visible.

Table 1 Mechanical characteristics of the structural elements

Structural element Density, kg/m3 Young’s modulus, N/m2

Plate 2670 6.30£ 1010

Stiffener 2700 6.23£ 1010

Stringer/frame 2700 6.95£ 1010

Fig. 2 Sketches of a typical segment with positioning of the L-shaped
30 £ £ 30 £ £ 3 mm stiffeners: a) cross section (front view) with the stiffen-
ers on the outerplates,b) sideviewwith the stiffeners onthe intermediate
� oor, and c) top view with the stiffeners on the inner bulkheads.

Fig. 3 Experimental complex structure in testing con� guration.

and stringers, with an average spacing of 5 cm. The stiffeners are
riveted to the plates with an average spacing of 5 cm as well. This
length correspondsto wavelengths at 1162 Hz for the presentmate-
rials. The average spacing between stiffeners is 20 cm (see Fig. 2).

Experimental Setup
The structure is suspended by means of eight rubber extensible

springs, the overall frequencyof suspensionbeing1:84 Hz, which is
well below the frequency range of interest. Therefore the structure
is considered to have free-free boundary conditions in the analysis.
Figure 3 is a photograph of the structure in testing con� guration.

To eliminate the contributions of internal acoustics, foams have
been suspended in all cavities. It has been shown by additional
experiments22 that a � lling rate of 10% of the cavities’ volume is
suf� cient for the erasure of acoustic modes in the midfrequency
range of interest, up to about 1200 Hz (see the following).

Four sets of accelerometers are distributed on the structure (see
Fig. 4). The � rst set is positionedalong the upper-right-handcorner
in the longitudinaldirection y in order to capturethe globalvibration
modes of the structure:10 B&K 4371 triaxial sensors are positioned
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right at each bulkheadbetween two segments and the extremitiesof
the structure. The second set contains 69 miniature accelerometers
distributedrandomly on the 23 plates constituting the � rst segment,
including the 6 nonstiffened plates of the bulkhead between this
segment and the second one. Three accelerometers are provided on
each plate. The third and fourth sets are similar in principle to the
second one, the accelerometers being distributed randomly as well
on the � fth and ninth segmentsrespectively.Three typesof low mass
sensors are used in these sets: B&K 8307, B&K 4375, and B&K
4374. Their purpose is to estimate the mechanical energies in the
equippedsegments.Finally accelerometerswere installedat each of
the four excitation locations (see the following) in order to measure
the autotransfers.These accelerometersand the four preceding sets
amount to a total number of 240 sensors, for which acquisitions
were made in four sequences up to 10,000 Hz.

White-noise excitations are successively applied at four points
at one extremity of the structure (see Fig. 4 for their locations and
labels). They are generated by an electrodynamicexciter connected
to a force gauge developedat ONERA, whose parasiticmass is less

Fig. 4 Locations of the applied excitations and sets of accelerometers.
Only several accelerometers of sets 2–4 have been displayed on this
sketch, for illustration purposes.

Fig. 5 Comparison of cross transfers for excitations FY1 and FY4.

than 0:5 g. Examination of input powers and ordinary coherencies
indicatedthat allmeasurementswere fullyworkablein the frequency
range 50–5000 Hz (Ref. 22).

Midfrequency Vibrations of the Experimental Structure:
Measurements and Mechanical Interpretation

Linearity of the Structure
Were the structure perfectly linear throughout the whole fre-

quency range considered, reciprocity would be observed at any
frequency.Figure 5 compares the frequency response function (ac-
celeration) measured at the location and direction of excitationFY4
when excitation FY1 is applied, and the frequency response func-
tion measured at the location and direction of excitation FY1 when
excitation FY4 is applied. It is seen that these two curves are al-
most identical up to about 1200 Hz, which is in agreement with the
cutoff frequency estimated from the average spacing between the
rivets. Beyond this frequencynonproportionaldamping and nonlin-
ear effects are introduced locally by the riveted joints of the various
structural elements. For an analyis at these frequencies, they can
be taken into account through for instance loss factors in an ener-
getic approach, as done in SEA; this of course cannot permit the
recovery of the discrepencies observed for the frequency response
functions.Up to the cutoff frequencyjust outlined,it is expectedthat
structuralvibrations can be well predicted by the classical theory of
linear elasticity, including damping and a proper representation of
the boundary conditions.

Illustration of the Midfrequency Range
As a � rst illustrative example of the various measurements done

on the experimental structure described in the preceding section,
we plot on Fig. 6 the estimated mechanical energy densities he.!/i
for segments 1 (at the extremity of the structure where the loads
are applied), 5 (intermediate), and 9 (the other extremity) in the
frequency range 50–5000 Hz. Mechanicalenergies in each segment
are estimated by

hes.!/i D
NplateX

j D 1

m j

3

3X

k D 1

jv j k.!/j2 (1)

where s D 1; 5, or 9 for either segment 1, 5, or 9.
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Fig. 6 Estimated mechanical energy densities for segments 1, 5, and 9 and excitation FX3. dBref = 10 £ £ log10(1 kg ·m2/s2 ).

This plot displaysthree characteristicfrequencydomainsdenoted
by LF, HF, and MF in Fig. 6. In the low-frequencyrange (LF), here
for frequencies up to about 250 Hz, the estimated mechanical en-
ergies have the same levels for the three segments, although they
are rapidly varying. Thus for such frequencies the vibratory energy
propagatesbroadly to the entire structureand does not remain local-
ized near the excitation.On the contraryin the high-frequencyrange
(HF), here for frequencies higher than about 1200 Hz, the energy
levels decrease signi� cantly when observed at increased distances
from the excitation. They are also steadily decreasing with the fre-
quency. Thus for such frequencies the vibratory energy remains
localized close to the excitation and diffuses only weakly to the
other parts of the structure.For the intermediatefrequencies,the so-
calledmidfrequencyrange (MF), the general trend is that the energy
levels in segments 5 and 9 are comparable but lower than the one in
segment 1. Thus the vibratory energy gets partially localized close
to the excitation, the remaining being spread in the entire structure
as is the case in the low-frequencyrange. In some narrow subbands,
however, one can observe that energies in segment 5 or 9 or both are
comparablewith the energy in segment1. This is also to be expected
from a typical midfrequency dynamic behavior because it is at the
transition between the low- and high-frequencyones. It outlines in
the mean time the necessity of having an information on the phase
in that intermediate frequency range.

Figure 7 displays the vertical accelerations measured by the ac-
celerometers 1, 4, and 9 of the � rst set: they are located along the
upper right corner of the structure in the longitudinal direction y,
accelerometer 1 being the closest one to the excitation, accelerom-
eter 4 being at an intermediate position, and accelerometer 9 being
located at the other extremity of the structure. The same general
remarks as for localizationor not of the vibrational energy hold for
the acceleration amplitudes shown, with an additional information
given here by the phase. In the high-frequencyrange it is uniformly
decreasingand follows the same trend for the three accelerometers.
Thus it brings no additional knowledge on the vibrational state of
the structure from one point to another. On the other hand, it is
strongly varying between ¡¼ and C¼ (phase jumps correspond to
the resonances) in the low-frequencyrange, for which it constitutes
an essential characteristicof the vibrationalstate of the structure. In
the intermediate-frequencyrange the phase is signi� cantly decreas-

ing; however, it follows different trends from one point to another.
Thus it constitutesan importantcharacteristicof the vibrationalstate
in this frequencydomain.This means that energy-typequantitiesare
not suf� cient to describe midfrequencyvibrations as just de� ned in
the context of the present experimental observations:one might be
able to provide an information on the phase as well (from measure-
ment or simulationof local quantities). This importantpoint has also
been underlinedin the recent work of Ref. 15 dedicatedto the devel-
opment of a numerical method for the prediction of the vibrations
at these intermediate frequencies.

From a mechanical point of view, the three frequency domains
just exhibited are characterized in the following way:

1) Low frequenciescorrespondto the � rst vibrationaleigenmodes
of the entire structure, the modal density (provided that it can be
de� ned in this domain, which is rather unclear) being low.

2) High frequencies correspond to the frequency ranges where
the modal density exhibits high, rather uniform values over these
ranges. In this case energy-type quantities smoothing the contri-
butions from the various eigenmodes in a given frequency band
are more adapted to the characterizationof the vibratory state of the
structure,especiallybecausethe phasedoes not bringany additional
information.

3) Medium frequencies corresponds to the frequency ranges
where the modal density exhibits important variations from one
band to the other. Vibrations of a complex structure are character-
ized by the superposition of some global eigenmodes and clusters
of local eigenmodes,23 which have an in� uence on both the local
and global behaviors of the structure in the narrow frequency band
where they are packed.

The local modes just introduceddo not necessarilyhave a highly
oscillatingshape.For instance,vibrationsof three-dimensionaltruss
structures typically exhibit such a behavior because of the numer-
ous, densely packed eigenmodes associated to all of the repetitive
truss members (beams and frames), which exist even at relatively
low frequencies.20;21 In the present case, modal clusters do occur
because of the repetitive (although nonperiodic) nature of the ex-
perimental structure. They are associated to the local eigenmodes
of the various plates constituting it, which have comparable geo-
metrical and mechanical characteristics.Because of this occurence,
uncertaintiesplay a fundamental role as shown in the next section.
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Fig. 7 Measured vertical accelerations by accelerometers 1, 4, and 9 of the � rst set and excitation FX3. dBref = 20 £ £ log10(1 m/s2).

In� uence of Uncertainties
The in� uence of uncertainties can be explained on the basis of

a simple example taken from the books of Arnol’d24 or Morand
and Ohayon.25 Consideran arbitrary structureoccupyinga bounded
domain and whose eigenmodes might depend continuously on a
singleparameter,say ¿ . These eigenmodes,denotedby fÁ®g1 · ® · N ,
and theassociatedeigenfrequencies,denotedby f!®g1 · ® · N , satisfy
a classical eigenvalue problem:

KÁ® D !2
®MÁ® (2)

The eigenmodesde� ne anorthogonaltransform,whichdiagonalizes
the symmetric, positive de� nite matrices M and K simultaneously
(whose existence is ensured by a classical result of linear al-
gebra); we choose to normalize them with respect to the mass:
ÁT

® MÁ¯ D ±®¯ , where T stands for transposition. Let us now in-
troduce a perturbationV.¿ / of the stiffness matrix such that the set
of admissible displacements remains unchanged. Then the eigen-
values f Q!® g1 · ® · N of the perturbed structure satisfy

¡
!2

® ±®¯ C V®¯

¢
q¯ D Q!2

®±®¯ q¯ (3)

where the fq®g1 · ® · N are the coordinates of the eigenmodes of the
perturbed structure, denoted by f QÁ®g1 · ® · N , when projected on the
unperturbed eigenmodes, and V®¯ is the projection of V on Á® and
Á¯ . When the perturbed eigenmodes are sought as a linear combi-
nation of two unperturbedeigenmodes associated to two successive
single eigenvalues !2

1 < !2
2 (two-modes approximation), we obtain

Q!2
§ D 1

2

¡
¸1 C ¸2 § 1

1
2

¢

QÁ§ D 1¡ 1
4

±
§

­­̧
2 ¡ Q!2

§

­­1
2 Á1 C

­­̧
1 ¡ Q!2

§

­­1
2 Á2

²
(4)

with ¸® D !2
® C V®® and 1 D .¸1 ¡ ¸2/2 C 4V 2

12. The perturbed
eigenvaluesare generally not repeatedbecause the case 1 D 0 leads
to two equations for one unknown (¿ ). Two cases arise:

1) 2V12 ¿ j¸1 ¡ ¸2j: this is the so-called weak interaction. Then
Q!2

¡ ’ ¸1 , Q!2
C ’ ¸2, QÁ¡ ’ ¡Á1 , and QÁC ’ Á2 . Perturbationshave in-

troduced only a slight shift of the eigenvalues and the eigenmode
directions.

2) 2V12 & j¸1 ¡ ¸2j: this is the so-calledstrong interaction.Eigen-
modes are signi� cantlyaltered,and theparticularcase¸1 D ¸2 gives
QÁ¡ D .¡Á1 CÁ2/=

p
2 and QÁC D .Á1 CÁ2/=

p
2, that is, an overall

rotation of 45 deg of the modes.
Note that considerationof a perturbationof the mass matrix leads

to comparable results. A symmetric system with three degrees of
freedom has also been considered in Ref. 26.

The strong interaction case shows that for a structure which has
comparable eigenvalues a weak perturbation, or uncertainty, of the
stiffness induces strong modi� cations to its response, at least lo-
cally. The overall space of admissible displacements is basically
unchanged, but the vectors of its eigenmode basis can be signi� -
cantly altered. Complex structures that exhibit a repetitive pattern
of any kind, but not necessarilyperiodic, as for example the present
experimental structure, are therefore subjected to strong interac-
tion effects. This physical observation has important implications
on the numerical strategy to be chosen: it means that it is unreal-
istic to compute local eigenmodes for such systems unless model
uncertainties have been signi� cantly reduced. Thus, for broadband
excitationsand particularilymidfrequencyvibrations it is generally
not possibleto use reductionmethods based on the projectionon the
eigenmode basis. Furthermore, it is worth noting at this stage that
the extraction of higher-order eigenmodes from a large eigenvalue
problem sets important algebraic and numerical dif� culties as well.
However, one can remark that, although local eigenmodes might be
individuallystrongly altered by the uncertainties,their combination
should remain rather stable as indicated in the preceding remarks.
The modal hybridization method proposed by Morand18 relies on
this fact to construct a reduction basis adapted to midfrequency
vibrations and which is strongly dependent on the imposed excita-
tions. The frequencywindow method of componentmode synthesis
proposed by Min et al.27 is also reminiscent of this latter property.

Numerical Simulations of the Midfrequency Vibrations
Modeling Strategy

From the examination of the experimental results for the broad-
band vibrationsof a complex three-dimensionalstructurepresented
in the preceding section, we have outlined several key features that
numerical simulations should be able to reproduce in the midfre-
quency range we focus on. They orientate the modeling strategy we
should adopt for the analysis of the present experimental structure.
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First, analytical methods cannot be applied as a result of the evi-
dent complexityof this structure.Thereforewe turn out to numerical
methods. Classical linear elasticity shall be relevant for the low- to
midfrequency range of interest, say B D 100–1200 Hz, so that a
variational formulation in the frequency domain discretized by the
� nite element method seems well adapted to our objectives. It al-
lows the accounting for the proper boundary conditions, as well
as the modeling of damping effects. For instance, a visco-elastic
behaviorwith memory can be modelizedby consideringfrequency-
dependent stiffness and damping operators. This model is retained
for the numerical simulation presented here; its relevance for the
midfrequency range has already been demonstrated in Ref. 28.

The � nite element mesh should incorporate a large number of
degrees of freedom to cope with the typical wavelengths observed
in the frequency range B. As modal reduction cannot be directly
applied in this case, for the physical and numerical reasons just
outlined (consideringalso the fact that the stiffness matrix depends
on the frequency in the general case) a direct inversion method of
the whole dynamic stiffness matrix of the structure shall be im-
plemented. To avoid the highly expensive computation of this in-
verse at each frequencypoint for the range B, we have implemented
a time-frequency algorithm,7;8 which allows the calculation to be
performed only for the central frequencies of narrow midfrequency
bands whose union is the entire frequency range B.

Time-Frequency Algorithm
A detailed presentation of the algorithm has already been made

in Refs. 7–9. We brie� y outline its main steps in the present section.
A narrow midfrequency band Bº is de� ned by its central circular
frequency Äº and its bandwidth 1!º , such that

Bº D .Äº ¡ 1!º=2; Äº C 1!º=2/ (5)

with 1!º ¿ Äº and B D [º Bº .
The weak formulation of the equation of motion of the structure

in the narrow frequency band Bº is discretized by the projectionon
a � nite element basis, which leads to the usual following equation
for all ! 2 Bº :

[¡!2M C i!D.!/ C K.!/]Uº.!/ D Fº .!/ (6)

Damping and stiffness matrices depend on the circular frequency
because the elasticity tensor is frequencydependent for the general
case of material visco-elasticity with memory. This dependence is
particularly apparent in the intermediate-frequencyrange, whereas
it is often hardly noticeable in the low-frequency range.28 Because
functions ! 7! D.!/ and ! 7! K.!/ are also continuous and usu-
ally smooth enough on the whole real line and considering that
1!º ¿ Äº , the preceding Eq. (6) is approximated by

£
¡!2M C i!D.Äº / C K.Äº/

¤
U
¯ º.!/ D Fº .!/ (7)

Equation (7) is associated to the second-orderordinary differential
equation with constant coef� cients:

M RU
¯ º.t/ C D.Äº/ PU

¯ º.t/ C K.Äº/U
¯ º.t/ D Fº.t/ (8)

Performing a change of variable! D !0 C Äº in Eq. (7) with ! 2 Bº

and !0 2 B0 D [¡1!º=2; 1!º =2], the equation obtained is solved
numerically backward in time by a Newmark scheme for the long
timescale 2¼=1!º . The approximateddisplacementsU

¯ º in the nar-
rowband Bº , correspondingto the short timescale2¼=Äº , are recon-
structedexactlyfromthesenumericalresultsbyShannon’s sampling
theorem. The time-frequency algorithm allows the computation of
U
¯ º .!/ for any ! in Bº at a numerical cost theoreticallycomparable
to the direct inversion of Eq. (6) at a single frequency in the nar-
rowband Bº . The � nal solution for the whole frequency range B is
obtained as

U.!/ ’
X

º

Bº .!/U
¯ º.!/ (9)

This algorithm has been tested extensivelyat ONERA for simple
and more complex con� gurations, includingcoupled � uid-structure

interactionin structuralacousticsapplications,formodelsof slender
structuresup to about30,000degreesof freedomand 2% of nonzero
terms for the stiffness matrices.

Application to the Experimental Structure
A � nite element model has been developed for the experimental

structure. It comprises 86,939 degrees of freedom for 16,349 nodes
and 38,394 elements, including 35,166 shell elements and 3,228
beam elements. Internal acoustic cavities have not been modeled
for the reasons already mentioned in the section describing the ex-
perimental setup. The numbering of equations has been optimized
using the Gibbs–Poole–Stockmeyer algorithm29 for sparse storage.

Fig. 8 Comparison of measured (——) and computed ( ) auto-
transfers for excitation FX3. dBref = 20 £ £ log10(1 m/s2).

Fig. 9 Comparison of measured (——) and computed ( ) cross
transfers of accelerometers 1, 5, and 9 (transverse accelerations) of the
� rst set for excitation FX3. dBref = 20 £ £ log10(1 m/s2 ).
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The density of nonzero terms in the upper triangular part of the
stiffness matrix is about 0:02% for a mean half-bandwidth equal to
6%. As we want to use it for further studies in case of nonsymmet-
ric impedance boundary conditions, no symmetry conditions were
applied, and the whole structure has been discretized, although it is
symmetric with respect to its longitudinalaxis.

The overall frequency range of numerical analysis Bnum D 100–

1000 Hz has been devided into 24 narrow subbands Bº of increas-
ing widths, the latter being � xed by the criteria 1!º=Äº ’ 0:1 for
º D 1; 2; : : : ; 24.Damping is takenintoaccountthroughouttheanal-
ysis by a simpli� ed model of the damping matrix, which is given
the form

Dº D ³ºÄº

£
M C 1

¯¡
Ä2

º ¡ 1!2
º

¯
4
¢
Kº

¤
(10)

The average damping rate ³º in the narrow frequency band Bº is
equal to 0:75% for all º D 1; 2; : : : ; 24; this value has been � xed
after comparisons with the experimental results for the frequency
response functions.

Calculations have been performed using the commercial code
MSC/NASTRAN in which the time-frequency algorithm has been

Fig. 10 Comparison of measured (——) and computed ( ) mechanical energies in segments 1, 5, and 9 for excitation FX3. dBref =
10 £ £ log10(1 kg ·m2/s3 ).

implemented in Direct Matrix Abstraction Program (DMAP) in-
structions. No particular care has been taken on the optimization
of the program (which uses sparse matrices), but the improvement
in terms of CPU time compared to a direct inversion method on
a frequency-by-frequency basis is signi� cant. The vectorized com-
putation for one narrow frequency band and the reconstruction at
100 frequency points in that band takes 17 min of CPU time, to be
compared to 2 min of CPU time for the direct inversion at a single
frequency; thus the gain is a factor of about 10.

Comparisons with Experimental Observations
and Lessons Pertaining to Them

We present here only the resultsobtained for the example of exci-
tation FX3. Numerical results for the other excitationscall for qual-
itatively comparable comments. Figure 8 is a plot of the frequency
response function at the point where excitation FX3 is applied par-
allel to the x axis. Figure 9 is the plot of the frequency response
functions at the locations of accelerometers 1, 4, and 9 of the � rst
set. Finally, Fig. 10 is the plot of the estimated mechanical energies
using Eq. (1) integrated over narrow frequency subbands, for both
the measured and computed responses:
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hEs;º i D 1

¼

Z

Bº

hes.!/i d! (11)

Numerical simulations and experimental results compare satis-
factorily up to 700 Hz for the frequency response functions and
up to 600 Hz for the mechanical energies. (The estimator used for
these quantities is rather coarse, and anyhow it is not adapted to the
low-frequency range as seen on the plots.) Clearly, the latter lim-
itation is caused by the inadequacy of the � nite element model in
term of number of degreesof freedomfor the higher frequencies,as
further shown by the comparison of the frequency response func-
tions for the accelerometers of sets 2 through 4 (not displayed in
this communication). Indeed the typical size of the plate and beam
elements is twice the average spacing between the rivets. There-
fore re� nement of the mesh is still possible. However, the question
raised by these results is the relevanceof pursuingsuch a strategyof
re� nement. The size of the elements would rapidly reach the aver-
age spacing between the rivets; thus, more sophisticatedmodels of
mechanical junctions and connections would be needed. The latter
should account for both geometrical (contact, friction) and mate-
rial (plasticity) local nonlinearities, for instance. To the best of our
knowledge, no universal and well-established procedure has been
proposed yet allowing to use them in routine applications.Further-
more this approach adds uncertainty to the problem in the sense
that a re� ned mesh would require a great deal of re� ned estimation
of the (increasingly numerous) parameters input in the model and
their levels of con� dence. Nevertheless, one can conjecture that a
routine� nite element analysis is always able to predict the structural
dynamic behavior in some lower part of the midfrequency range,
provided that a direct inversion of the dynamic stiffness matrix is
performed.

But this case study,consideredas a characteristicone of industrial
applications(for instancea militaryaircraftfuselage), underlinesthe
dif� culties put by the development of numerical tools for the pre-
diction of vibrations in the upper part of the midfrequency range
as just de� ned, as well as its transition with the high-frequency
range. Indeed Figs. 6 and 7 show that a truly complex structure
has a completely different dynamic behavior whether it is observed
in the low-frequency range or in the high-frequency range. Global
standing waves, the global normal modes, dominate in the former,
whereas a typical transport or diffusive pattern is observed in the
latter. It is very much unlikely that the same mathematical model
and numerical method can describe both behaviors. For instance,
steady-state or transient SEA equations have a fundamentally dif-
ferentmathematical structureas compared to the classicalstructural
dynamics equation (6). In the intermediate-frequencyrange there is
a transitionbetween two dynamicbehaviorpatterns; therefore,there
should be a transitionof numericalmodels as well. We can consider
several different strategies, having all their own limitations. Multi-
scale approaches, for the present case, raise questions whether it is
possible to de� ne different spatial scales for such a heterogeneous,
bounded structure. A possible way to overcome these dif� culties
would be to use nonparametricmodels,30 at least to model local un-
certainties corresponding to the mechanical junctions in conjunc-
tion with substructuring techniques in the � nite element method.
The same questions arise with the implementation of SEA, hybrid
SEA, or power � ow methods13¡15 being foreseen,whereas their ap-
plication to the present case for the high-frequency range seems
feasible at � rst glance; their extension to the upper part of the mid-
frequencyrange identi� ed here raises challengingquestions.On the
other hand, asymptotic ray methods16 could not properly handle the
boundary conditions and the topology of such a structure and thus
would require adaptedtreatmentsfor these aspects.Further research
is clearlyneeded in this direction,and one of the aims of this study is
to show that the proposed numerical methods should be applicable
to arbitrary, complex con� gurations and topologies that exhibit the
most characteristicfeatures and dif� culties raised by midfrequency
vibration predictions.

As regards experimental aspects, one can make the following
concluding remark for the time being. An interesting aspect of the
numerical reduction bases proposed in Refs. 19–21 is that they can
be constructed from measured responses on one hand and that they

fully integrate the fact that these responses are highly dependent
on the shape of the excitations, at least in the midfrequency range,
on the other hand. Their intensive use requires the development of
appropriateacquisitionprocedures in order to construct transfer re-
sponse functions of high dimensions. Automated laser vibrometers
can partially ful� ll such needs and bring further insights into the
midfrequency range of vibrations.

Conclusions
This paper has presented a tentative experimental validation of

some numerical methods currently implemented for the prediction
of vibrationsof complex structures in the midfrequencyrange. The
experimental data have been used to give further evidences of the
typical behavior of a truly complex structure in the intermediate-
frequency range and to elaborate a modeling strategy adapted to
these frequencies.Comparisonsbetween measurementsand numer-
ical simulations show a good agreement for the lower part of the
frequencyrange of interest,which validatesa posteriori the strategy
chosen, but the model developed fails to properly predict the struc-
tural responsecharacteristicsin its upperpart.Althoughtheoriginof
this inef� ciency can be clearly identi� ed, it raisesquestionswhether
such predictions are realizable with the actual numerical methods
in cases of realistic complex structures. This study has underlined
the need to enhance the numerical methods used for midfrequency
vibration predictions, which should be able to account for an arbi-
trary complex topology, typically assemblies of beams, plates, and
shells rather than those simple structural elements.
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Structures,” La Recherche Aérospatiale (English ed.), Vol. 5, Sept.–Oct.
1982, pp. 65–87.

8Soize, C., Hutin, P.-M., Desanti, A., David, J.-M., and Chabas, F., “Lin-
ear Dynamic Analysis of Mechanical Systems in the Medium Frequency
Range,” Computers and Structures, Vol. 23, No. 5, 1986, pp. 605–637.

9Liu, W. K., Zhang, Y., and Ramirez, M. R., “Multiple Scale Finite Ele-
ment Methods,” International Journal for Numerical Methods in Engineer-
ing, Vol. 32, No. 5, 1991, pp. 969–990.

10Burie, J. B., and Marion, M., “Multilevel Methods in Space and Time
for the Navier–Stokes Equations,” SIAM Journal on Numerical Analysis,
Vol. 34, No. 4, 1997, pp. 1574–1599.

11Greenstadt, J., “Solution of Wave Propagation Problems by the Cell
Discretization Method,” Computer Methods in Applied Mechanics and En-
gineering, Vol. 174, No. 1–2, 1999, pp. 1–21.

12Sestieri, A., Del Vescovo, D., and Lucibello, P., “Structural-Acoustic
Coupling in Complex Shaped Cavities,” Journal of Sound and Vibration,
Vol. 96, No. 2, 1984, pp. 219–233.

13Langley, R. S., and Bremner, P., “A Hybrid Method for the Vibration
Analysis of Complex Structural-Acoustic Systems,” Journal of the Acousti-
cal Society of America, Vol. 105, No. 3, 1999, pp. 1657–1671.

14Yan, H., Parrett, A., and Nack, W., “Statistical Energy Analysis by Finite
Elements for Middle Frequency Vibration,” Finite Elements in Analysis and
Design, Vol. 35, No. 4, 2000, pp. 297–304.



1884 SAVIN

15Vlahopoulos, N., and Zhao, X., “Basic Development of Hybrid Finite
Element Method for Midfrequency Structural Vibrations,” AIAA Journal,
Vol. 37, No. 11, 1999, pp. 1495–1505.
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1991, edited by P. Ladevèze and O. C. Zienkiewicz, Vol. 32, Studies in
Applied Mechanics, Elsevier Science, Amsterdam, 1992, pp. 347–364.

19Soize, C., “Reduced Models in the Medium Frequency Range for Gen-
eral Dissipative Structural-Dynamics Systems,” European Journal of Me-
chanics A/Solids, Vol. 17, No. 4, 1998, pp. 657–685.

20Kim, T., “Frequency-Domain Karhunen–Loève Method and Its Appli-
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